
S E C O N D Q U A R T E R 1 9 9 9 9

Irecently worked on the implementation
of a global peer-to-peer data replication
for a Front Office Trading System

(FOTS) utilizing Sybase replication. This
work was carried out as part of a major
requirement for a global investment bank.
The FOTS provides traders with a view of
the trading activity and the positions held,
allowing them to continue trading against
orders placed earlier by other offices in
other locations. For example, a trade may
include the exchange of securities in mul-
tiple geographic regions such as London,
New York, Tokyo, and Hong Kong.

The work was actually started by build-
ing a Sybase Warm Standby for the
London database. Having successfully
implemented this utility, a pilot project
was put in place to check the feasibility of
one-way replication to the Hong Kong
Data Server, effectively testing the volume
of data replicated and stress-testing the
WAN. As the application relied on a
third-party package, care was taken to
avoid changing the code. The data struc-
ture was enhanced by addition of primary
keys (prerequisites for warm standby
replication). In peer-to-peer replication, a
given database acts as publisher and sub-
scriber simultaneously; all databases play
equally important roles.

Having identified the initial problems,
a truly peer-to-peer replication system was
set up among London, Hong Kong and
Tokyo, effectively replicating almost all
the tables. The information on all sites
had to be as current as possible and had to

be available 24 hours a day. Practically in
excess of 95% of the transactions had to
be applied to all databases, worldwide,
within five minutes of data being posted to
a local database.

This article provides templates of how
to create replication and subscription defi-
nitions for user tables in a given Sybase
database, as well as practical examples of
how to apply function strings to tailor
what is delivered to the destination table.
In addition, we’ll discuss ways of monitor-
ing the replication system and quickly
checking the data.

Project Problems to be Addressed
A typical trading system needs to provide
facilities to a business community scat-
tered around geographically distant sites;
in our case, London, Tokyo, Hong Kong
and New York. A trader logs into the
Application Server (a UNIX server) local-
ly through an X-Windows session and
starts the application, which connects to
the Data Server via one or more threads.
In the majority of cases this set-up
involves many Application Servers run-
ning locally, with the Data Server located
in one of the major sites. In our example,
the Data Server was located in London.
However, this set-up has the following
drawbacks:
◆ Application performance is limited

because of the
geographical distance.

◆ Network response degrades when traf-
fic over the WAN is heavy. For exam-

Global Peer-to-Peer Data Replication
Using Sybase Replication Server
By Mich Talebzadeh

Mich Talebzadeh is an independent
Sybase consultant, working largely in
investment banking. He teaches on
topics including SQL Server adminis-
tration, performance and tuning, data
replication, and client/server database
and application design. He can be
reached at: mitch.talebzadeh@db.com

10 I S U G T E C H N I C A L J O U R N A L

ple, when users in remote sites run reports requesting a
large number of rows, there is an impact on those entering
trades etc.

◆ The Data Server can potentially become a bottleneck
as a larger user community contends for access.

◆ Data becomes unavailable when a failure occurs on the
network.

◆ There are side effects on database maintenance. For
example, Update Statistics, Database Consistency
Checks (DBCC), and other tasks are performed when
remote users are busy putting in trades. This introduces
unnecessary complications and delays.

◆ A typical third-party application may not access data in
the most efficient way. For example, if the application
makes a large number of discreet queries to the database,
connection latency between the Application and Data
Server could cause start-up delays.

◆ If the application were to crash, the system becomes un-
usable to traders and has an unacceptable business impact.

We responded to these issues with a three-step plan. First, we
created the Sybase Warm Standby database for the local site
on the standby (BCP) server. Next, we created a peer-to-peer
replication system for the trading database with local copies of
the database in London, Tokyo and Hong Kong respectively.
The database in each site acts as the source and recipient of
data—in other words, the database plays the role of publisher
and subscriber simultaneously. Third, we created a set of utili-
ties to monitor and maintain the replication system. In such a
trading system, service availability and recovery is essential, so
particular attention was given to early warning systems.

Where to Locate the Replication Server
The Sybase Replication Server is an open server and could be
located on any UNIX Server. It is advisable not to put the
Replication Server on the production Data Server. This keeps
the production box simple and less complicated (a plus for
maintenance and recovery), allows us to resource the CPUs
and memory for the production SQL Server, and keeps the
Replication Server up and running even when the production
box is down. The Replication Server was created on the BCP
server, which served largely as an emergency backup.

The Warm Standby Setup
I’d like to say a few words on our warm standby set-up (valid
for v. 11.0.3). A warm standby set-up is a pair of databases,
one of which is a backup copy of the other. Client applica-

tions update the active database; Replication Server main-
tains the standby database. If the active database fails, switch-
ing to the standby database allows client applications to
resume work with little interruption. A warm standby data-
base is basically a simplified form of one way replication.

Sybase Warm Standby replication will only replicate the
data to the standby box, and the standby database can only
be used in read only mode. Of course, there can only be one
warm standby set-up for a given database. Any changes to
the objects in the database (i.e., database related application
patches) will not be replicated and will have to be applied
to the production and standby databases. Login names, data-
base users, and permissions are not replicated. Although
Replication Server does not usually require replication
definitions in order to maintain a standby database, it does
use any replication definitions that exist. Note that you
need to generate replication definitions for tables with
more than 128 columns.

We also created primary keys for replicated tables. In a
warm standby set-up, the Replication Server generates a
where clause to specify target rows for updates and deletes.
If there is no replication definition for a table, the generated
clause includes all columns in the table, except text, image,
timestamp, and sensitivity columns as the primary key.
This turns out to be inefficient.

Also, don’t forget that you still need to prune the transac-
tion log of the primary database on a regular basis. Just one
option would be to dump the production database daily at
6:00 a.m., followed by dumping of the transaction log at
regular intervals between 7:00 a.m. until 9:00 p.m. After
9:00 p.m., turn on the truncate log on chkpt option on the
production database. You need to fit this to your schedule.

Planning for the Peer-to-Peer Replication System
In planning a global replication system, I suggest that
administrators take the following ideas under consideration.
First and foremost, of course, some business rules have to
be defined in conjunction with the business in order to
guarantee the integrity of data on each site.

Then, when beginning to test your system, set up a
one-way replication between two locations, identifying the
primary site (in our case, London) and the subscriber site
(Hong Kong). Of course, the best option is to set up the test
environment on one local and one remote server. Otherwise,
you can use two different servers locally linked via a WAN
simulator. Note that a one-way set-up can be extended to a
peer-to-peer replication.

G L O B A L P E E R - T O - P E E R R E P L I C A T I O N

S E C O N D Q U A R T E R 1 9 9 9 11

It is important to estimate the volume of data to be repli-
cated daily, as well as the daily growth of your database. Also,
you should establish the bandwidth between the two replicate
sites, letting you know whether you should embark on replica-
tion or if the bandwidth needs to be improved. In addition,
you must establish how the replication is going to be
achieved. Do you need to:
◆ Replicate tables and turn off triggers for replicated

transactions?
◆ Not replicate tables and let triggers insert the records?
◆ Replicate stored procedures?

Does your application depend on timestamps for certain trans-
actions? Remote locations mean different time zones—a data
insert at 9:00 a.m. in London corresponds to a replicated
transaction of 9:00 a.m. in Hong Kong (this assumes no laten-
cy), whereas the local time would be 5:00 p.m. Would this be
considered a valid business transaction? If not, consideration
should be given to the use of function strings to allow for the
local timestamps.

Using Table Replication
On our project, it was decided after testing to replicate tables
and turn off triggers for replicated transactions. With this
solution we need to identify those tables to be replicated and
establish whether they meet the criteria—are primary keys
defined, etc.—and we need to exclude local or static tables,
which can be loaded at the start-up when the primary data-
base is loaded onto the remote sites. We exclude the identity
column from replication, as the remote server will automati-
cally generate identity columns for replicated transactions.

Managing Conflicts in Peer-to-Peer Replication
Managing Inserts
A typical local table will include inserts from local applications
in addition to inserts delivered via replicated transactions. In a
peer-to-peer set-up, both tables are bi-directional. Designers
tend to use unique IDs to identify records in a table, and pri-
mary keys or unique clustered indexes are usually built on the
unique ID. The unique ID for a given table tends to be a
monolithically incrementing 32-bit integer stored in and
retrieved from a table, the so-called table_next_row_id.
Intersite conflicts occur when rows are inserted in a local
table and distributed to the remote table. If the remote table
already has a record with the same unique ID, the replicated
insert will be rejected, and the data at the remote table will
be inconsistent with the local table. Possible solutions are:

1. Add a location key to the tables if it is not already there,
and include it in the primary key for replicated tables.
This is useful if the application is at the design stage. As
replication implementation is normally an afterthought,
this approach may not be possible without a substantial
change to database schema and stored procedures (estab-
lishing ownership of data).

2. Localize the table_next_row_id and do not replicate it.
Allocate ranges for the next_row_id column for each loca-
tion (a 32-bit integer provides ability to store up to 2 bil-
lion unique values). For example, you can allocate the fol-
lowing ranges:

Conflicting Updates
The best way to handle conflicting updates from different
sites is to construct the application and the environment so
that conflicts cannot happen. However, in many cases one
needs to rely on application-specific business rules to
reduce/eliminate the conflicts. For a trading system these
could be:
◆ On performing a simultaneous new trade on the same hold-

ing on a different site, the problem will occur on a calcu-
lated field, such as quantity or P&L. Furthermore, there
are no signals to warn the users when the problem occurs.
The adopted solution is to recalculate these fields nightly
so that they will have the correct figure by the following
day, when the portfolio is loaded. However, we have not
yet encountered such a problem.

◆ On simultaneous update on the same order. This could
happen due to a mistake. The business rule is whoever
created the order owns it, and should be the one who
updates the order. If this happens, the quantity (P&L)
data will be out of sync. Again, there will be no warning
message to indicate this and it will be very difficult for IT
support to detect it. The traders will inform Application
Support that the P&L or quantity is wrong. The support
group needs to check the historical order and amend it
appropriately. Once this is carried out, the correct
details will be replicated to other sites and the
databases will be in sync again.

G L O B A L P E E R - T O - P E E R R E P L I C A T I O N

Location Reserved range for next_row_id Column
London 1-100,000,000
Hong Kong 101,000,000-150,000,000
Tokyo 151,000,000-200,000,000

12 I S U G T E C H N I C A L J O U R N A L

Peer-to-Peer Replication Implementation
In our set-up, we are replicating data between London, Hong
Kong, and Tokyo. The majority of the tasks mentioned below
are best performed when no user is using the databases, such
as over weekends. Each database is controlled by its local
replication server.

1. Before creating replication servers ensure that you have
already created devices for the RSSD databases and have
raw partition devices for the stable queues, etc. In other
words, fill in those Replication worksheets.

2. Once the Replication Server is created, change its
password using the alter user command from the
Replication Server.

3. Create the diagnostic run files for replica-
tion servers so the DBA may observe each
replicated transaction performed by the
server (invaluable in identifying problems).
This is achieved by replacing repserver
binary with repserver.diag binary in the run
file and adding the following entry to the
replication server .cfg file:

trace=DSI,DSI_CMD_DUMP

4. Create error class rs_sqlserver_error_class
(default sql server error class) in ID replica-
tion server only. This will handle sql server
errors in replication server. The default
error action for all errors returned by sql
server is to stop replication. You can assign
action to the created error class etc. Error
actions are stored in table rs_erroractions.
Use rs_helperror error_no, v to get informa-
tion about the errors.

5. Turn off trigger settings for London, Hong
Kong and Tokyo servers in the correspond-
ing replication server. Use configure con-
nection command with dsi keep triggers
option set to “off.” For example, in
lon_rep_server run the following command:

configure connection to london_sql_server.db
set dsi_keep_triggers to ‘off’

6. Add the server name and port ID of replication servers to
the relevant interfaces files.

Creating Direct Routes
In our triangle diagram, we need to create routes in order for
our three replication servers to send messages to destination
replication servers. A route is a one-way message stream that
sends requests from one Replication Server to another, carrying
data modification commands, replicated functions, and stored
procedures. In this design the routes are created as follows:
For example in lon_rep_server run the following command to
create route to hk_rep_server:

Peer-to-peer
Replication
Set Up

App Server
LondonLondon

Client

App Server
Hong Kong

Hong Kong
Client

App Server
Tokyo

Tokyo
Client

Hong Kong
Database

Tokyo
Database

Hong Kong
LTM

Tokyo
LTM

Hong Kong
Replication

Server

Tokyo
Replication

Server

London
Replication

Server

London
LTM

London
Database

Warm
Standby

Database
London

Warm
Standby

Data

G L O B A L P E E R - T O - P E E R R E P L I C A T I O N

Route type Source destination
Direct lon_rep_server hk_rep_server
Direct lon_rep_server tyo_rep_server
Direct hk_rep_server lon_rep_server
Direct hk_rep_server tyo_rep_server
Direct tyo_rep_server lon_rep_server
Direct tyo_rep_server hk_rep_server

Replication Location Location ID server
Server of RSSD
lon_rep_server London, on Standby Standby sql server yes

Server
hk_rep_server Hong Kong Hong Kong sql server -
tyo_rep_server Tokyo Tokyo sql server -

Building three replication servers using sybase rs_init facility

Direct Route

Connection

S E C O N D Q U A R T E R 1 9 9 9 13

create route to hk_rep_server
set username hk_rep_server_rsi
set password hk_rep_server_rsi_ps

hk_rep_server_rsi is the RSI username already created by rs_init
when you created the hk_rep_server. hk_rep_server_rsi_ps is the
default password for such user etc. Use rs_helproute in any
RSSD to check the status of the route created.

Loading the Database to Be Replicated
In order to perform the initial load of the database to be repli-
cated, you should perform the following steps:
1. Decide where you are going to load your initial database.

In our case, we chose London.
2. dbcc the database and perform update statistics in

London.
3. Review all the primary keys for tables to be replicated.
4. Turn off all replication flags in the user tables using

sp_setreptable table_name, false.
5. Do dbcc settrunc(ltm,ignore) on the database.
6. Dump transaction with truncate_only.
7. Dump database to the dump directory.
8. FTP the dump file to the warm standby server.
9. Load the database on the standby.
10. Zip the dump file to remote locations.
11. Load the database from the dump file in remote locations.
12. Localize the so-called local tables. For example, if you

have table_next_row_id, set next_row_id column to the
appropriate starting values for location.

Adding databases is quite straightforward: To add to the
London Production database, we use lon_rep_server; for Hong
Kong, use hk_rep_server; and for Tokyo, use tyo_rep_server.
Note that all three databases are a source of data and there-
fore require an LTM or a rep agent.

Creating Replication Definitions
Once the databases are loaded, we can create all the replica-
tion definitions for the London database tables using
lon_rep_server. You need to pass the sql server name and the
database name as parameters. For a script (genrepdef.ksh)that
will automatically create replication definitions, see the
extended version of this article on the ISUG website at
www.isug.com. Also, check that replication definitions are
successfully implemented by looking at the log files and using
rs_helprep in the relevant RSSD database.

To create replication definitions in the other publisher
sites, this would be:

Next, turn on replication for all replicated tables by running
sp_setreptable table_name, true. If you use the command rs_hel-
prep in any RSSD database, you should see all replication defi-
nitions for all sites irrespective of which RSSD you are look-
ing at. Finally, create subscription definitions for all other sites
by running the above script (genrepdef.ksh) against the local
replication server.

Creating Subscription Definitions
You should create two subscription definitions for each repli-
cation definition:

The three stages of subscription include creation, activation,
and validation. Be sure to check the status of subscription fol-
lowing each stage:
1. The script gensubdef.ksh referred to above will automati-

cally generate the subscription definitions for London
database tables in Hong Kong. This script can be easily
amended to create subscription definitions for any site.

2. Once the subscriptions have been defined, check their
status by running rs_helpsub in the RSSD database for the
rep server. This should show the status as defined.

3. Create and run a script called activatesubdef.ksh based
upon gensubdef.ksh. Replace DEFINE SUBSCRIPTION
${dbtable}_${DATABASE}_… with ACTIVATE SUBSCRIPTION
${dbtable}_${DATABASE}_…

4. Run rs_helpsub again. This should show the status as
active.

5. Create and run a script called validatesubdef.ksh based
upon gensubdef.ksh. Replace DEFINE SUBSCRIPTION
${dbtable}_${DATABASE}_… with VALIDATE SUBSCRIPTION
${dbtable}_${DATABASE}_…

Replication Sql server named Database name Replication
Definition passed to script passed to script server run against
London tables london_sql_server db lon_rep_server
Hong Kong tables hk_sql_server db hk_rep_server
Tokyo tables tokyo_sql server db tyo_rep_server

Subscription Sql server named Database name Replication
Definition passed to script passed to script server run against
London to Hong Kong hk sql server db hk_rep_server
London to Tokyo Tokyo sql server db tyo_rep_server
Hong Kong to London london sql server db lon_rep_server
Hong Kong to Tokyo tokyo sql server db tyo_rep_server
Tokyo to London london sql server db lon_rep_server
Tokyo to Hong Kong kh sql server db hk_rep_server

G L O B A L P E E R - T O - P E E R R E P L I C A T I O N

6. Run rs_helpsub again. This should show the status as valid.
7. Repeat the subscription definitions for other sites as well.
8. At the end of subscription definitions, you should have

two subscription definitions for each replication defini-
tion. In other words, doing rs_helpsub for each table
should give you 3x2 subscriptions = 6 lines. This should
be shown in any RSSD database.

Use of Function Strings to Apply Local Timestamps
Replication Server converts functions to commands and sub-
mits them to destination data servers. For example, a new row
inserted in the source table causes Replication Server to dis-
tribute an rs_insert function specific to that table to the sub-
scriber databases. A possible solution for applying local time-
stamps at replicate database would be to modify rs_insert for a
given source table to invoke an RPC at the destination data-
base. The RPC in turn inserts local timestamp to the sub-
scribed table. Note that for a peer-to-peer Replication System
this process needs to be applied to all databases.

Handling Replication Maintenance
The rs_init facility automatically creates a maintenance login
in the format of database_name_maint. This user is created as a
public user in the replicate database. If you are using a warm
standby set-up and your tables contain identity columns, you
need to make user database_name_maint a “dbo” in the stand-
by database, as this user needs to set the option identity insert
on when replicating tables with identity columns.

Tuning Replication Servers for Better Performance
There are some configuration parameters that can be altered in
order to get better performance from the Replication Servers:
init_sqm_write_delay: A stable queue manager waits for at least
init_sqm_write_delay milliseconds for a block to fill before it
writes the block to the correct queue on the stable device
(default is 1000). Try decreasing this parameter.
init_sqm_max_write_delay: A flush to the queue is guaranteed
to happen after waiting for init_sqm_max_write_delay, if the
DSI or RSI thread reading the queue is unable to connect to
the target or has been suspended (default 10000). Decrease
this parameter if required. sqt_max_cache_size: You will need
to increase this value if there are a lot of open transactions
and or large transactions. Memory for sqt_max_cache_size is
taken from the global memory pool (default is 131072 bytes).
batch_sz: The larger the batch_sz, the less often the trunca-
tion point is updated (default 1,000 commands).

This parameter is set in LTM configuration (cfg) file.
Applicable to Replication Server up to 11.0.3.

Monitoring the Replication System
Replication Server provides a host of commands for checking
replication status:
◆ Replication Server commands
◆ Replication Server Manager
◆ Sybase Central (Replication Server 11.5.1 and above)
◆ rs_subcmp program that allows comparison of tables in

two replicate databases and has flags for reconciling them.
◆ Specifically written scripts

Beware of the use of rs_subcmp for reconciling large tables
between remote databases. This may take a long time and
will not always be practical. You may consider BCP’ing data
instead. Also see the code posted with this article at
www.isug.com for additional ideas.

Monitoring the Latency and Delivery of Data
Finally, it is a common practice for DBAs to set up a table in
the replicated database where data is updated for the purpose
of checking the latency and health of the replication system.
In its simplest form, one can insert or update records in this
table and see if the data is being replicated to the other sites.
The time it takes for data to get to the remote site will give
an indication of latency. However, it doesn’t indicate whether
the business transactions arrive in remote sites in a timely
manner; nor does it allow for applications creating a large
number of transactions where data delivery is impacted by
concurrency, table size, or any locking mechanisms. It should
also be noted that the maintenance user trying to deliver the
replicated data may be blocked by local users. If the statistics
on the user tables are not current, the replicated data may
take a longer time to be delivered, resulting in remote users
being blocked waiting for locks to be released.

Therefore, it is important to have a more realistic method
for evaluating replication delivery. A possible solution is to
look at the entries in an audit or transact history table in the
replicate database and check the delivery timestamp. Any
latency can be estimated by comparing the timestamps for
records delivered and adjusting for server clock differences.

Syntax referred to in this article is available for download
in the Members Only section of the ISUG website at
www.isug.com. ■

14 I S U G T E C H N I C A L J O U R N A L

G L O B A L P E E R - T O - P E E R R E P L I C A T I O N

