
Oracle and Sybase,
 Concepts and Contrasts

By Mich Talebzadeh

Part 1

January 2006

In a large modern enterprise, it is almost inevitable that different
portions of the organization will use different database management
systems to store and search their critical data. Competition, evolving
technology, mergers, acquisitions, geographic distribution, and the
inevitable decentralization of growth all contribute to this diversity.
As database practitioners some of us have been accustomed to work
in environments where both Oracle and Sybase co-exit. This is
especially true in the Financial Sector. Over the years the DBAs,
architects and developers have tended to be specialized in one of
these products. However, with the technology dollars at premium and
the ever changing nature of development and support, the companies
and clients are looking for resources with multi-disciplined skills.
This article provides a high level view of concepts and contrasts
between Oracle and Sybase database management systems in a UNIX
environment.

Mich Talebzadeh is a consultant and a technical architect who has worked with Sybase and Oracles since
the early 1990s. He is the co-author of the book “Sybase Transact SQL Programming Guidelines and
Best Practices” and the author of the forthcoming book “Oracle and Sybase, Concepts and Contrasts”.
Mich can be reached at mich@peridale.co.uk.

Disclaimer: Great care has been taken to make sure that the technical information presented in this paper is
accurate, but any and all responsibility for any loss, damage or destruction of data or any other property which may
arise from relying on it is explicitly disclaimed. The author will in no case be liable for any monetary damages arising
from such loss, damage or destruction.

 1

Introduction

For the sake of this article we will be looking at the latest releases of these two
Relational Database Management Systems (RDBMS); namely Oracle 10g, Release 2
and Sybase ASE 15. Both versions have been out for sometime and are gaining
popularity. In addition to Windows, Oracle and Sybase are available on almost all
flavors of UNIX, including Linux. Unlike Oracle, a Sybase Data Server is traditionally
called a Server rather than an instance or a database. Nowadays the Sybase Data
Server is known as Adaptive Server Enterprise or ASE (to distinguish it from other
Sybase database products like Sybase IQ). Previously it was known as Sybase SQL
Server. However, you should not be surprised if people refer to ASE as Sybase SQL
Server, Sybase database or even Sybase instance. To keep the comparison focused,
we will consider the implementation of these two RDBMSs on UNIX platforms only.

An RDBMS is charged with three basic tasks. It must be able to put data in, keep that
data, and take the data out and work with it. An RDBMS manages resources much like
an operating system. Most RDBMSs perform their own memory management, can
manage their own disks, and some even implement their own scheduler. Running an
RDBMS is like running an operating system (OS) on top of another operating system.
Though most RDBMS implementations forego UNIX or Windows services in favor of
their own, many of the concepts are shared.

.
A widely adopted model referred to as client/server deploys both Oracle and Sybase
extensively. Other architectural models deploy these two products as well. In the
simplest implementation of a client/server model, the processing is split between one or
more client computers and a server computer. The client computers concern is with the
presentation, while the server is dedicated and can be tuned for raw computation and
data storage. Communication between the client and server occurs over a network.

Client-Server Database systems fall into two different architectures or process models.
These are process pools (2-N) and multi-threaded respectively. In both models, a
process resides on each client machine. In a multi-threaded architecture, each of these
client processes communicates directly with the RDBMS server processes. In a 2-N
implementation, each client process communicates with a server process known as an
agent process (or server/shadow process as Oracle calls it). This agent process
interacts with the RDBMS processes on behalf of the client. It is because of the
presence of this agent process that the architecture is sometimes called 2-N. The agent
process connects to the database shared memory and accesses the data store on
behalf of the client process.

An advantage of the 2-N model is that it more fully exploits OS scheduling and has a
less complex implementation. An advantage of a multi-threaded implementation is that

 2

fewer OS context switches are required since the context switch occurs in the user
space of one of the server processes, which is servicing multiple clients.

In general, Oracle and ASE provide implementations that are hybrids. ASE defaults to a
single multi-threaded process but can be configured to run multiple instances of these
processes (multi-process), each communicating and coordinating with the other. ASE
calls each of these processes an engine. Oracle defaults to a 2-N implementation. In
Oracle’s terminology, this implementation is called a Dedicated Server mode. If
configured in a Shared Server mode, Oracle creates multiple shared server processes
that act on behalf of multiple clients, as opposed to a one to one correspondence, in a
dedicated server mode.

Architecture

ASE’s multi-threaded kernel uses ASE’s own threading model rather than the operating
system one. This is one of the main architectural differences between ASE and Oracle.
ASE’s kernel handles scheduling and dispatching of user threads and internal database
threads. Instead of relying on the operating system to schedule operation on a CPU or
multiple CPUs, ASE takes this responsibility for itself. Figure 1 provides a high-level
view of ASE’s multi-threaded architecture running on a uniprocessor (single CPU) host.
This diagram is fairly simplified; however, it should serve the purpose. The client
programs (which could be direct applications) connect to the server directly (two-tier
architecture) or can come from the application servers (three-tier architecture). ASE is
running as process ID 7434 under the operating system. The ASE scheduler schedules
the tasks to run. In this scenario task 9 is running and task 8 is in the run queue.

 3

Host CPU

Engine 0Engine 0

Running

RunnableRunnable
QueueQueue

Task 8Task 8

Task 9Task 9

Running

Runnable
 Queue

 Data
Disks

Operating System
 PID =7434

User 1

User 2

User 3

Master database

Figure 1, ASE’s multi-threaded architecture running on a uniprocessor host

Note that all ASE processes (internal or user) are threads as opposed to processes at
the OS level. When ASE is started with a single engine, only one ASE executable can
be seen at the operating system level. In order to see all the logged threads, one has to
log in to ASE itself and do a SQL query. An ASE engine is defined as a process
executing the ASE binary to perform database services on behalf of user requests and
system services. In a system with multiple CPUs, one can enhance ASE’s performance
by configuring ASE to run using multiple engines. In this sense, each engine is a single
operating system process. This process is called a dataserver. ASE can be run with a
single engine, like the example shown in Figure 1. With multiple processes, ASE utilizes
Symmetric Multi Processing (SMP) as shown in Figure 2. Depending on the number of
CPUs available and the demands placed on ASE, a good practice is to run a maximum
of one ASE engine per available CPU. ASE will not allow the server to be started with
more ASE engines than the number of CPUs. If we add another engine to ASE, the
parent dataserver process sprawns (forks) another OS process.

 4

Like Oracle’s background processes in a dedicated server mode, these ASE engines
are persistent processes that will run until ASE is shutdown. For ease of comparison, an
Oracle 10g architectural diagram is also shown in Figure 3

 5

Figure 2, ASE’s multi-threaded architecture diagram with multiple processes

 6

Figure 3, Oracle 10g Architecture Diagram

 7

As can be seen from figures 2 and 3, the structures used internally differ between
Oracle and ASE, but the purpose of these structures is similar. The structures in
memory store buffers, execution plans, and state information for clients and server
tasks. Structures on disk store the rows of data, metadata, information for allocation
accounting, and access structures such as indexes. A comparison between Figures 2
and 3 shows that ASE’s internal threads provide similar functionality as the Oracle
background processes. ASE’s internal threads can run on any engine. Unlike Oracle, in
ASE there is no process like listener running on the host. All ASE engines also serve
as network listeners and accept client connections. This process is performed in a
round robin fashion load balancing the client connections across the running ASE’s
processes. ASE scheduler dynamically schedules client tasks onto available engines.
When an engine becomes available, it runs the next runnable task. It is important to
note that in contrast to Oracle (running in Shared Server mode) there is no dispatcher;
each available ASE engine is looking for work in the runnable task queue. ASE
scheduler orchestrates the execution of multiple threads based on their priority,
according to a simple rule: always run the ready threads with the highest priority.

What is an ASE’s database?

It is important to distinguish between an Oracle database and what ASE calls a
database. An Oracle database consists of the collection of data files and other
supporting files stored on disks. Logically an Oracle database is made up of system,
user and temporary tablespaces. User tablespaces are commonly used to group
together all related objects pertaining to an application. In this sense an Oracle user
tablespace can be thought of as an ASE user database. In a generic terminology
applicable to Oracle and ASE alike, an Oracle user tablespace or an ASE user
database make up a component of an application. Any application providing service to
the business normally has one or more components.

An Oracle database must have at least one tablespace, the SYSTEM tablespace, in
order for the database and the associated instance to be created. The SYSTEM
tablespace holds the Oracle data dictionary and is required to be there all the time.
Additionally, Oracle 10g has introduced another system tablespace called the SYSAUX.
When you create an Oracle server both the SYSTEM and SYSAUX tablespaces will be
created and you cannot drop them thereafter. When you create ASE, the system
specific databases master, model, sybsystemprocs, sybsystemdb and tempdb will be
created and you cannot drop them either.

ASE’s master database contains the server wide metadata sys and the dynamic
monitoring MDA tables. These tables are functionally equivalent to Oracle’s DBA and
Dynamic Performance V$ Views respectively. When you startup ASE, the master
database is the first database recovered and brought online.

 8

The system database model provides the template metadata required to create a user
or temporary database. The model database is small of the order of 2MB. The system
database sybsystemprocs contains system specific stored procedures. A Sybase DBA
can add additional user defined stored procedures to this database for server wide
usage.

In a nutshell, master, model and sybsystemprocs databases are as vital to ASE as are
SYSTEM, SYSAUX and control files for Oracle.

The system database sybsystemdb provides the intra-server two-phase commit and the
inter-server distributed transaction coordination modules for ASE.

Both Oracle and ASE provide scratch pad or temporary workspace(s). ASE calls this
temporary workspace a tempdb database. The tempdb database is a system database
used by ASE to store temporary tables and temporary stored procedures, for sorting,
subqueries, and aggregates with GROUP BY, ORDER BY, for cursors, and so on. This
database contains only temporary objects. The contents of tempdb databases are built
from the model database each time the server is restarted. ASE’s tempdb database is
equivalent in functionality to the Oracle’s temporary tablespace. ASE can have multiple
tempdbs and these can be grouped much like Oracle 10g’s temporary tablespace
groups.

Storage Concepts

In Oracle data block is the fundamental unit of storage whereas the basic unit of storage
in ASE is data page. A data page is the minimum amount of data transferred to and
from disk to the cache. The supported page sizes for ASE are 2K, 4K, 8K and 16K.
When you create ASE or Oracle, you specify the default page size or the data block for
the server respectively. Once you have specified the ASE’s default page size, you
cannot change it later. Likewise Oracle’s default block size is fixed at the time of
database creation. Beginning with Oracle 9i it is possible to have four non-standard
block sizes in addition to the database’s standard block size in Oracle. This is in
contrast to ASE that currently offers one page size per server instance from which the
structures on disk can be constructed. ASE allows multiple of this page size for I/O.
They are referred to as buffer pools.

Extent is the next unit of storage in ASE. Extents are always allocated to a table, index,
or LOB structure. Unlike Oracle where an extent is a specific number of contiguous data
blocks, an ASE extent is fixed at eight contiguous data pages. The smallest amount of
space that a table or index can occupy is one extent. Extents are deallocated only when
all the pages in an extent are empty. The logical and physical storage components of
ASE are shown in Figure 4. Compare this one with the corresponding diagram for
Oracle in Figure 5.

 9

Figure 4: The relationship between Logical and Physical storage schemas in ASE

Figure 5: The relationship between the Logical and Physical storage schemas in

Oracle

The next logical unit of storage above the extent is the allocation unit. An allocation unit
is fixed at thirty two extents. A request by an object for more space is satisfied by
allocating an extent from an allocation unit belonging to the database.

 10

Both Oracle and ASE provide logical constructs for mapping of the underlying operating
system datafiles. Oracle calls this construct a tablespace and ASE refers to the
construct as device. Both ASE and Oracle support Bigfile mapping and recommend raw
partitions. An ASE device, like an Oracle tablespace, is a logical structure. You cannot
look at the operating system and see a tablespace or a device. As far as a tablespace is
concerned, it can have one or more physical datafiles at the OS level (with the
exception of Bigfile tablespace having only one Bigfile). In ASE, a device can only be
associated with one datafile or raw partition. An ASE database is built on devices. A
database can span multiple devices and can be allocated device fragments as part of
database space requirements. An Oracle tablespace can be expanded by adding
another datafile or resizing the current datafile(s). When a device fragment has been
added to an ASE database, it cannot be removed. Similarly once a datafile has been
added to an Oracle tablespace, it cannot be dropped from that tablespace either.

Perhaps the most confusing part of data storage when it comes to ASE is the segment.
In Oracle, a segment is a group of one or more extents that contains all the data for a
specific structure within a tablespace, such as table or index (the exception being the
partitioned tables and indexes). However, this is not the case in ASE. When an ASE
database is created on devices or device fragments, three segments are automatically
created on each corresponding device or device fragment. In ASE the segments are
there to constrain where an object can be placed. For example, you can create a table
or index on a specific segment. The system generated segments are called system,
default and logsegment respectively. User defined segments can be added to devices if
required. In addition, the system, default and logsegments can be removed from a
device fragment.

In ASE, a row has to fit in one page. In contrast, Oracle allows a row to be chained
across multiple blocks. This has the advantage of not restricting the row size, but has a
downside in that multiple blocks need to be accessed in order to retrieve a single row.
Excessive chaining can also result in fragmentation and can impact performance.
However, this feature of Oracle outweighs any perceived disadvantages.

Memory Management

Both Oracle and ASE deploy memory management techniques evolved over years.
Figures 2 and 3 show these structures. ASE uses shared memory to hold the data
cache, the procedure cache, user log cache and ASE kernel data structures such as the
sleep queue, runnable task queue, lock chains and pending I/O.

In Oracle, the database buffer cache has three sub-components. These are called
Default, Keep and Recycle Pools. Default Pool is the one that comes out of the box.
This Pool is equivalent to the Default Data Cache in ASE. Additionally, ASE enables
one to create User Defined Caches. These are called Named Cache and are widely
deployed for performance reasons. ASE allows one to create multiple buffer pool sizes
in each Cache, thus enabling the optimizer to use different page sizes in the query. The

 11

optimizer is the component of an RDBMS that determines the best way to execute each
query. For example for a Server created with 8K page size, one can have 8K, 16K, 32K
and 64K buffer pools. Two cache replacement strategies are used by ASE. These are
called Least Recently Used (LRU) replacement strategy and Most Recently Used
(MRU) (fetch-and-discard) replacement strategy respectively. These two strategies are
distinctively different. The LRU replacement strategy is used for pages that a query
needs to access more than once or pages that must be updated. In contrast, the MRU
or fetch-and-discard replacement strategy is used for pages that a query needs to read
only once. Oracle handles the Cache replacement strategy in a similar way. However, it
does not quite use the same terms that ASE uses. Oracle has used an MRU algorithm
for many releases to manage the buffer cache. This is a linked list of buffer addresses
with a most used side and a least used side. Individual blocks read into memory are
placed on the most used side. An exception to this policy is with full table scans. These
blocks would go immediately to the least used end of the MRU/LRU chain thereby
preventing a large table scan from overwriting the entire buffer cache. So ASE’s “Fetch
and Discard" is basically what happens on full table scans for Oracle.

ASE uses a dynamic parameter called max memory to initialise the total memory
required for ASE. Everything else takes memory from this parameter. As long as the
host has enough shared memory, ASE’s memory can be increased dynamically by
increasing max memory parameter without rebooting the server. In contrast, Oracle
divides memory between System Global Area (SGA) and Program Global Area (PGA).
Various Oracle constructs take memory from these two parameters. These two
parameters are static and fixed at startup. Oracle 10g has introduced two optional
parameters SGA_TARGET and PGA_AGGREGATE_TARGET that allow automatic
adjustment of memory components in Oracle. ASE allows various memory constructs
such as the default data cache, procedure cache, named caches and others to be
configured dynamically by the user. However, as yet ASE does not support dynamic
workload management.

Task Management

In ASE’s terminology a task is a request for work by the client and is carried out by an
engine or multiple engines through discrete steps.

Here is a brief description of ASE task management:

1. The client application makes a login request (e.g., by using the appropriate Open Client
API calls such as Sybase Open Client). All incoming network handshakes can be
handled by any engine briefly, before passing the request to the engine servicing the
smallest number of network I/O connections.

2. In response, the selected engine creates a user task for this client. The user task
(thread) will go to the sleep queue until the client requests work from ASE.

3. The client requests service request, for example, by sending SQL commands to ASE via
Tabular Data Stream (TDS) packet. TDS is the logical networking protocol used by ASE
for client/server communication.

 12

4. ASE task scheduler moves the user task from the sleep queue to the runnable task
queue.

5. An ASE engine will pick up this task from the runnable task queue, parse, normalize,
compile and execute the SQL command. During these steps, the SQL code is converted
into low-level tasks such as requests for disk I/O.

6. This engine will execute each step until one of the following happens:
a. The task completes
b. Blocks on locks
c. The task is blocked waiting for disk I/O
d. The task exceeds its time

If b or c happens, the task will be removed from the run queue and be placed in the
sleep queue.

7. When the blocking is resolved (i.e. the disk I/O is complete or the lock is granted), the
task will be added by the scheduler to the runnable task queue

8. After the task blocks for the last time, it continues executing until it finishes. At that time,
the user task yields the server engine and moves to the sleep queue until the client
presents the server with more work.

9. If ASE has to send back any result set to the client through TDS packets, this process
will be completed by an engine with the least load.

In contrast Oracle client request management can be described briefly as follows:

1. A client makes a connection request to an Oracle instance
2. The client and the server are connected via a TCP/IP network
3. The client has Oracle client software (Oracle Net) installed on the client host. Oracle Net

is basically a set of Application Programming Interfaces (API) programmes that allows
the client to connect to the server. Oracle uses Transparent Network Substrate (TNS)
protocol for sending and receiving network packets

4. Oracle Net reads a network file usually called tnsnames.ora to connect to the server
5. This file, much like ASE’s interfaces file, contains among other things the detailed

information about the Server name, the host it is running on and the port that the server
is listening on to the incoming client request. The principal is the same in both Oracle
and ASE

6. The host that the Oracle server is running on has a process called TNS listener, running
on the host and listening to the incoming connections on a specified port. The listener
process is responsible for connecting the user process to the database

7. In a dedicated server mode, the listener process achieves the connection by creating a
dedicated server process for the incoming user process. That is, the listener sprawns
(forks) a new UNIX process.

8. The server process inherits all the parent’s property and talks directly to the user
process

9. The client makes service request, for example by sending SQL commands to the server
process via TNS

10. Server process receives the request
11. As and when required the server process:

a. checks the client’s privileges
b. checks if the query is already parsed in the shared pool. If not, it parses the

query and places it in the shared pool
c. comes up with the query plan and executes it. It also performs any logical or

physical I/Os as necessary. The execution happens in the PGA of the server
process

 13

d. returns the result of the query back to the user process
12. The server process communicates with other server processes and the Oracle

background processes via shared memory
13. When the client process terminates, the server process terminates accordingly

Isolation Levels, Locking and Transaction Management

Both ASE and Oracle support ANSI Isolation levels. ASE and Oracle default to Isolation
Level 1 or Read committed. The Isolation Level 3 or Serializable is supported in ASE by
the HOLDLOCK keyword of the SELECT statement. In Oracle this is achieved by
means of SELECT FOR UPDATE.

Perhaps the most contentious issue is the locking mechanisms deployed by Oracle and
ASE. Both Oracle and ASE provide row level locking and support Shared and exclusive
locks. However, what differentiates Oracle from ASE is the ability of Oracle to provide
multi-version read consistency ensuring that readers and writers do not block each
other. In Oracle, whenever a change is made by a transaction, the original data are
copied to undo log segments. Consequently, unlike ASE, which uses locks to prevent
records from being changed by others while being read (readers allow readers and
block writers), Oracle uses the undo information to construct a read-consistent version
of data. In many cases this Oracle’ approach to concurrency is very useful. For
example, batch reports do not block updates, updates do not block reports and updates
do not result in inconsistent reports that show some old data and some new data.
However, the overhead of doing this is the cost of generating these prior copies, which
requires fairly complex linked lists to be constructed in a variety of ways. In particular,
there is a "per-transaction" linked list that has to be initiated and terminated with the
transaction. So if you are committing too frequently (as a Sybase programmer is trained
to!), you have just hit another part of Oracle that can potentially introduce an
unexpected overhead! Additionally, this undo data is stored in database blocks, so it is
protected by redo; the more redundant undo data you generate, the harder you hit the
redo log. In contrast, every ASE database manages its own transaction log. A
transaction log of an ASE database performs the combined role of redo log and undo
log for that database. An Oracle server on the other hand, has one integrated database
only. When any session issues a commit, the redo log buffer must be written to disk and
sessions can start to queue up for that write to complete. Redo log buffer serializes
database changes, and issuing a commit is a serializing event in any database. So if
commits are issued frequently, then you are potentially introducing heavy overhead for
Oracle.

The ASE architecture is quite different when it comes to transaction management. All
undo and redo information is contained in a singe database structure - the transaction
log - within the database. The transaction log is like a giant undo segment and redo log
combined. For many applications this structure works quite well. However, recovery can
be a problem. Each time a transaction completes (that is, a COMMIT or ROLLBACK is
issued), a high-watermark is moved in the log to the beginning of the next open
transaction. Remember that a transaction is open until either a ROLLBACK or COMMIT

 14

is issued to the database. If an application begins a transaction, and for some reason, it
is neither committed nor rolled back for a while (i.e. a long running transaction), then
there is a potential that the transaction log of that database gets full and all activities in
that database come to a halt. This basically means keeping transactions short and
sweet, thus avoiding potential concurrency and transaction log running out of space
issues.

Summary

It is impossible to provide anything but an overview in an article. However, I hope that
this article has provided you with the basic understanding of architecture and working of
Oracle and ASE. In the next article we will be looking at database objects, data types
and the optimizer behavior.

 15

	Introduction
	Architecture
	What is an ASE’s database?
	Storage Concepts
	Memory Management
	Task Management

	Isolation Levels, Locking and Transaction Management
	Summary

